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4.4 Linear Operators on R3

Recall that a transformation T : Rn → Rm is called linear if T (x+y) = T (x)+T (y) and T (ax) =
aT (x) holds for all x and y in Rn and all scalars a. In this case we showed (in Theorem 2.6.2) that
there exists an m×n matrix A such that T (x) = Ax for all x in Rn, and we say that T is the matrix
transformation induced by A.

Definition 4.9 Linear Operator on Rn

A linear transformation
T : Rn → Rn

is called a linear operator on Rn.

In Section 2.6 we investigated three important linear operators on R2: rotations about the origin,
reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on R3: Rotations about a line through
the origin, reflections in a plane through the origin, and projections onto a plane or line through
the origin in R3. In every case we show that the operator is linear, and we find the matrices of all
the reflections and projections.

To do this we must prove that these reflections, projections, and rotations are actually linear
operators on R3. In the case of reflections and rotations, it is convenient to examine a more general
situation. A transformation T : R3 →R3 is said to be distance preserving if the distance between
T (v) and T (w) is the same as the distance between v and w for all v and w in R3; that is,

‖T (v)−T (w)‖= ‖v−w‖ for all v and w in R3 (4.4)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so the following
theorem shows that they are both linear.

Theorem 4.4.1
If T : R3 → R3 is distance preserving, and if T (0) = 0, then T is linear.

w

v+wv

T (w)

T (v+w)

T (v)

x

y

z

Figure 4.4.1

Proof. Since T (0)= 0, taking w= 0 in (4.4) shows that ‖T (v)‖= ‖v‖
for all v in R3, that is T preserves length. Also, ‖T (v)−T (w)‖2 =
‖v−w‖2 by (4.4). Since ‖v−w‖2 = ‖v‖2 − 2v ·w+ ‖w‖2 always
holds, it follows that T (v) ·T (w) = v ·w for all v and w. Hence (by
Theorem 4.2.2) the angle between T (v) and T (w) is the same as the
angle between v and w for all (nonzero) vectors v and w in R3.

With this we can show that T is linear. Given nonzero vectors v
and w in R3, the vector v+w is the diagonal of the parallelogram
determined by v and w. By the preceding paragraph, the effect of T
is to carry this entire parallelogram to the parallelogram determined
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by T (v) and T (w), with diagonal T (v+w). But this diagonal is
T (v)+T (w) by the parallelogram law (see Figure 4.4.1).

In other words, T (v+w) = T (v)+T (w). A similar argument shows that T (av) = aT (v) for all
scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section ??.

Reflections and Projections

In Section 2.6 we studied the reflection Qm : R2 →R2 in the line y = mx and projection Pm : R2 →R2

on the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

Qm has matrix 1
1+m2

[
1−m2 2m

2m m2 −1

]
and Pm has matrix 1

1+m2

[
1 m
m m2

]
.

L
PL(v)

0

v

QL(v)

Figure 4.4.2

We now look at the analogues in R3.
Let L denote a line through the origin in R3. Given a vector v in

R3, the reflection QL(v) of v in L and the projection PL(v) of v on L
are defined in Figure 4.4.2. In the same figure, we see that

PL(v) = v+ 1
2 [QL(v)−v] = 1

2 [QL(v)+v] (4.5)

so the fact that QL is linear (by Theorem 4.4.1) shows that PL is also linear.13

However, Theorem 4.2.4 gives us the matrix of PL directly. In fact, if d=

 a
b
c

 6= 0 is a direction

vector for L, and we write v =

 x
y
z

, then

PL(v) = v·d
‖d‖2 d = ax+by+cz

a2+b2+c2

 a
b
c

= 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

 x
y
z


as the reader can verify. Note that this shows directly that PL is a matrix transformation and so
gives another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in R3 with direction vector d =

 a
b
c

 6= 0. Then

13Note that Theorem 4.4.1 does not apply to PL since it does not preserve distance.
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PL and QL are both linear and

PL has matrix 1
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2



QL has matrix 1
a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2



Proof. It remains to find the matrix of QL. But (4.5) implies that QL(v) = 2PL(v)−v for each v

in R3, so if v =

 x
y
z

 we obtain (with some matrix arithmetic):

QL(v) =

 2
a2+b2+c2

 a2 ab ac
ab b2 bc
ac bc c2

−

 1 0 0
0 1 0
0 0 1


 x

y
z


= 1

a2+b2+c2

 a2 −b2 − c2 2ab 2ac
2ab b2 −a2 − c2 2bc
2ac 2bc c2 −a2 −b2

 x
y
z


as required.

M

v

O PM(v)

QM(v)

Figure 4.4.3

In R3 we can reflect in planes as well as lines. Let M denote a
plane through the origin in R3. Given a vector v in R3, the reflection
QM(v) of v in M and the projection PM(v) of v on M are defined in
Figure 4.4.3. As above, we have

PM(v) = v+ 1
2 [QM(v)−v] = 1

2 [QM(v)+v]

so the fact that QM is linear (again by Theorem 4.4.1) shows that PM
is also linear.

Again we can obtain the matrix directly. If n is a normal for the plane M, then Figure 4.4.3
shows that

PM(v) = v− projn v = v− v·n
‖n‖2 n for all vectors v.

If n =

 a
b
c

 6= 0 and v =

 x
y
z

, a computation like the above gives

PM(v) =

 1 0 0
0 1 0
0 0 1

 x
y
z

− ax+by+cz
a2+b2+c2

 a
b
c


= 1

a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc b2 + c2

 x
y
z


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This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in R3 with normal n =

 a
b
c

 6= 0. Then PM and

QM are both linear and

PM has matrix 1
a2+b2+c2

 b2 + c2 −ab −ac
−ab a2 + c2 −bc
−ac −bc a2 +b2



QM has matrix 1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


Proof. It remains to compute the matrix of QM. Since QM(v) = 2PM(v)−v for each v in R3, the
computation is similar to the above and is left as an exercise for the reader.

Rotations

In Section 2.6 we studied the rotation Rθ : R2 → R2 counterclockwise about the origin through the
angle θ . Moreover, we showed in Theorem 2.6.4 that Rθ is linear and has matrix

[
cosθ −sinθ

sinθ cosθ

]
.

One extension of this is given in the following example.

Example 4.4.1

Let Rz, θ : R3 → R3 denote rotation of R3 about the z axis through an angle θ from the
positive x axis toward the positive y axis. Show that Rz, θ is linear and find its matrix.

θ

θ

i
j

k

Rz(i)

Rz(j)

x

y

z

Figure 4.4.4

Solution. First R is distance preserving and so is linear
by Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain
the matrix of Rz, θ .

Let i =

 1
0
0

, j =

 0
1
0

, and k =

 0
0
1

 denote the standard

basis of R3; we must find Rz, θ (i), Rz, θ (j), and Rz, θ (k).
Clearly Rz, θ (k) = k. The effect of Rz, θ on the x-y plane
is to rotate it counterclockwise through the angle θ . Hence
Figure 4.4.4 gives

Rz, θ (i) =

 cosθ

sinθ

0

 , Rz, θ (j) =

 −sinθ

cosθ

0


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so, by Theorem 2.6.2, Rz, θ has matrix

[
Rz, θ (i) Rz, θ (j) Rz, θ (k)

]
=

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1



Example 4.4.1 begs to be generalized. Given a line L through the origin in R3, every rotation
about L through a fixed angle is clearly distance preserving, and so is a linear operator by Theo-
rem 4.4.1. However, giving a precise description of the matrix of this rotation is not easy and will
have to wait until more techniques are available.

Transformations of Areas and Volumes

Origin

sv

v

Figure 4.4.5

Let v be a nonzero vector in R3. Each vector in the same direction
as v whose length is a fraction s of the length of v has the form sv
(see Figure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector u is in the
parallelogram determined by v and w if and only if it has the form
u = sv+ tw where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. But then, if T : R3 → R3

is a linear transformation, we have

T (sv+ tw) = T (sv)+T (tw) = sT (v)+ tT (w)

O

sv
v

sv+
tw

tw w

Figure 4.4.6

Hence T (sv+ tw) is in the parallelogram determined by T (v) and
T (w). Conversely, every vector in this parallelogram has the form
T (sv+ tw) where sv+ tw is in the parallelogram determined by v
and w. For this reason, the parallelogram determined by T (v) and
T (w) is called the image of the parallelogram determined by v and
w. We record this discussion as:

v

w
u

O

T (v)

T (w)

T (u)

O

Figure 4.4.7

Theorem 4.4.4
If T : R3 → R3 (or R2 → R2) is a linear operator, the image of
the parallelogram determined by vectors v and w is the
parallelogram determined by T (v) and T (w).

This result is illustrated in Figure 4.4.7, and was used in Exam-
ples 2.2.15 and 2.2.16 to reveal the effect of expansion and shear
transformations.

We now describe the effect of a linear transformation T : R3 →R3

on the parallelepiped determined by three vectors u, v, and w in
R3 (see the discussion preceding Theorem 4.3.5). If T has matrix A,
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Theorem 4.4.4 shows that this parallelepiped is carried to the paral-
lelepiped determined by T (u) = Au, T (v) = Av, and T (w) = Aw. In
particular, we want to discover how the volume changes, and it turns

out to be closely related to the determinant of the matrix A.

Theorem 4.4.5
Let vol (u, v, w) denote the volume of the parallelepiped determined by three vectors u, v,
and w in R3, and let area (p, q) denote the area of the parallelogram determined by two
vectors p and q in R2. Then:

1. If A is a 3×3 matrix, then vol (Au, Av, Aw) = | det (A)| · vol (u, v, w).

2. If A is a 2×2 matrix, then area (Ap, Aq) = | det (A)| · area (p, q).

Proof.

1. Let
[

u v w
]

denote the 3×3 matrix with columns u, v, and w. Then

vol (Au, Av, Aw) = |Au · (Av×Aw)|

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

Au · (Av×Aw) = det
[

Au Av Aw
]
= det (A

[
u v w

]
)

= det (A) det
[

u v w
]

= det (A)(u · (v×w))

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows
from Theorem 4.3.5 by taking absolute values.

k

p1

q1 2. Given p =

[
x
y

]
in R2, p1 =

 x
y
0

 in R3. By the diagram,

area (p, q) = vol (p1, q1, k) where k is the (length 1) coor-
dinate vector along the z axis. If A is a 2× 2 matrix, write
A1 =

[
A 0
0 1

]
in block form, and observe that (Av)1 = (A1v1)

for all v in R2 and A1k = k. Hence part (1) of this theorem
shows

area (Ap, Aq) = vol (A1p1, A1q1, A1k)
= | det (A1)| vol (p1, q1, k)
= | det (A)| area (p, q)

as required.
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Define the unit square and unit cube to be the square and cube corresponding to the coor-
dinate vectors in R2 and R3, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the
determinant of a matrix A:

• If A is a 2 × 2 matrix, then | det (A)| is the area of the image of the unit square under
multiplication by A;

• If A is a 3× 3 matrix, then | det (A)| is the volume of the image of the unit cube under
multiplication by A.

These results, together with the importance of areas and volumes in geometry, were among the
reasons for the initial development of determinants.

Exercises for 4.4

Exercise 4.4.1 In each case show that that T is
either projection on a line, reflection in a line, or ro-
tation through an angle, and find the line or angle.

a. T
[

x
y

]
= 1

5

[
x+2y
2x+4y

]

b. T
[

x
y

]
= 1

2

[
x− y
y− x

]

c. T
[

x
y

]
= 1√

2

[
−x− y
x− y

]

d. T
[

x
y

]
= 1

5

[
−3x+4y
4x+3y

]

e. T
[

x
y

]
=

[
−y
−x

]

f. T
[

x
y

]
= 1

2

[
x−

√
3y√

3x+ y

]

b. A =

[
1 −1

−1 1

]
, projection on y =−x.

d. A = 1
5

[
−3 4

4 3

]
, reflection in y = 2x.

f. A = 1
2

[
1 −

√
3√

3 1

]
, rotation through π

3 .

Exercise 4.4.2 Determine the effect of the follow-
ing transformations.

a. Rotation through π

2 , followed by projection on
the y axis, followed by reflection in the line
y = x.

b. Projection on the line y = x followed by pro-
jection on the line y =−x.

c. Projection on the x axis followed by reflection
in the line y = x.

b. The zero transformation.

Exercise 4.4.3 In each case solve the problem by
finding the matrix of the operator.

a. Find the projection of v =

 1
−2

3

 on the

plane with equation 3x−5y+2z = 0.

b. Find the projection of v =

 0
1

−3

 on the

plane with equation 2x− y+4z = 0.
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c. Find the reflection of v=

 1
−2

3

 in the plane

with equation x− y+3z = 0.

d. Find the reflection of v=

 0
1

−3

 in the plane

with equation 2x+ y−5z = 0.

e. Find the reflection of v =

 2
5

−1

 in the line

with equation

 x
y
z

= t

 1
1

−2

.

f. Find the projection of v =

 1
−1

7

 on the line

with equation

 x
y
z

= t

 3
0
4

.

g. Find the projection of v =

 1
1

−3

 on the line

with equation

 x
y
z

= t

 2
0

−3

.

h. Find the reflection of v =

 2
−5

0

 in the line

with equation

 x
y
z

= t

 1
1

−3

.

b. 1
21

 17 2 −8
2 20 4

−8 4 5

 0
1

−3



d. 1
30

 22 −4 20
−4 28 10
20 10 −20

 0
1

−3



f. 1
25

 9 0 12
0 0 0

12 0 16

 1
−1

7



h. 1
11

 −9 2 −6
2 −9 −6

−6 −6 7

 2
−5

0


Exercise 4.4.4

a. Find the rotation of v =

 2
3

−1

 about the z

axis through θ = π

4 .

b. Find the rotation of v =

 1
0
3

 about the z

axis through θ = π

6 .

b. 1
2

 √
3 −1 0
1

√
3 0

0 0 1

 1
0
3


Exercise 4.4.5 Find the matrix of the rotation in
R3 about the x axis through the angle θ (from the
positive y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the ro-
tation about the y axis through the angle θ

(from the positive x axis to the positive z axis). cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ


Exercise 4.4.7 If A is 3×3, show that the image
of the line in R3 through p0 with direction vector
d is the line through Ap0 with direction vector Ad,
assuming that Ad 6= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3× 3 and invertible, show
that the image of the plane through the origin with
normal n is the plane through the origin with nor-
mal n1 = Bn where B = (A−1)T . [Hint: Use the fact
that v ·w = vT w to show that n1 · (Ap) = n ·p for
each p in R3.]

Exercise 4.4.9 Let L be the line through the origin

in R2 with direction vector d =

[
a
b

]
6= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab
ab b2

]
.
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b. If QL denotes reflection in L, show that QL has

matrix 1
a2+b2

[
a2 −b2 2ab

2ab b2 −a2

]
.

a. Write v =

[
x
y

]
.

PL(v) =
(

v·d
‖d‖2

)
d = ax+by

a2+b2

[
a
b

]
= 1

a2+b2

[
a2x+aby
abx+b2y

]
= 1

a2+b2

[
a2 +ab
ab+b2

][
x
y

]

Exercise 4.4.10 Let n be a nonzero vector in R3,
let L be the line through the origin with direction
vector n, and let M be the plane through the origin
with normal n. Show that PL(v) = QL(v)+PM(v) for
all v in R3. [In this case, we say that PL = QL+PM.]

Exercise 4.4.11 If M is the plane through the ori-

gin in R3 with normal n =

 a
b
c

, show that QM has

matrix

1
a2+b2+c2

 b2 + c2 −a2 −2ab −2ac
−2ab a2 + c2 −b2 −2bc
−2ac −2bc a2 +b2 − c2


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